Предмет:
МатематикаАвтор:
аноним1. Для того что бы упростить данное тригонометрическое выражение нам понадобится знание тригонометрических формул суммы. В этом выражении мы будем использовать вот эти формулы:
sin( a + b ) = sina * cosb + cosa * sinb;
2. Давайте подставим тригонометрическую формулу sin( a + b ) = sina * cosb + cosa * sinb, в наше тригонометрическое выражение, тогда получаем:
(1 / 2) * sina - sin(п/3 + a) = (1 / 2) * sina - (sin(п/3) * cosа + cos(п/3) * sinа) =
= (1 / 2) * sina - sin(п/3) * cosа - cos(п/3) * sinа = (1 / 2) * sina - (1 / 2) * sina - (√3/2) * cosа =
= - (√3/2) * cosа.
Ответ: (1 / 2) * sina - sin(п/3 + a) = - (√3/2) * cosа.
Автор:
macintoshДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть