Предмет:
МатематикаАвтор:
аноним1. Преобразуем уравнение:
1 + sin(2x) = cosx - sinx;
2 - (1 - sin(2x)) = cosx - sinx;
2 - (cos^2(x) - 2sinx * cosx + sin^2(x)) = cosx - sinx;
2 - (cosx - sinx)^2 = cosx - sinx;
(cosx - sinx)^2 + (cosx - sinx) - 2 = 0.
2. Обозначим:
z = cosx - sinx;
z^2 + z - 2 = 0;
z1 = -2; z2 = 1.
3. Найдем значение x:
z = cosx - sinx = √2cos(x + π/4);
a) z = -2;
√2cos(x + π/4) = -2;
cos(x + π/4) = -√2, нет решений;
b) z = 1;
√2cos(x + π/4) = 1;
cos(x + π/4) = √2/2;
x + π/4 = ±π/4 + 2πk, k ∈ Z;
x = -π/4 ± π/4 + 2πk, k ∈ Z;
x = -π/2 + 2πk; 2πk, k ∈ Z.
Ответ: -π/2 + 2πk; 2πk, k ∈ Z.
Автор:
bambizpscДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть