Ответы 1

  • 3cos^2 (2x) + 10cos (2x) + 3 = 0;

    введем новую переменную cos (2x) = y;

    3y^2 + 10y + 3 = 0;

    D = b^2 - 4ac;

    D = 10^2 - 4 * 3 * 3 = 100 - 36 = 64; √D = 8;

    x = (-b ± √D)/(2a);

    y1 = (-10 + 8)/(2 * 3) = -2/6 = -1/3;

    y2 = (-10 - 8)/(2 * 3) = -18/6 = -3.

    Выполним обратную подстановку:

    1) cos (2x) = -1/3 - для уравнения cos x = a, решением будет x = ± arccos a + 2Пn, n ϵ Z;

    2x = ± arccos (-1/3) + 2Пn, n ϵ Z;

    x = ±1/2 arccos (-1/3) + Пn, n ϵ Z.

    2) cos (2x) = -3 - это уравнение не имеет корней, т.к. область значений косинуса [-1; 1], а (-3 ) не принадлежит этому промежутку.

    Ответ. ±1/2 arccos (-1/3) + Пn, n ϵ Z.

    • Автор:

      donovan
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years