• Сторона параллелограмма равна одной из его диагоналей и равна 8. Длина второй диагонали параллелограмма равна 8 корень

Ответы 1

  • Для решения задачи рассмотрим рисунок.

    Рассмотрим параллелограмм ABCD, у которого сторона АВ = CD = 8 см, а также диагональ ВЕ = АВ = 8 см. Сторона AD = BC = 8 * √2.

    Треугольник ABD равносторонний по двум сторонам, тогда высота ВЕ проведенная к стороне AD делит ее пополам.

    АЕ = AD / 2 = (8 * √2) / 2 = 4 * √2.

    Рассмотрим прямоугольный треугольник АВЕ и найдем по теореме Пифагора катет ВЕ, являющийся высотой параллелограмма.

    ВЕ2 = АВ2 – АЕ2 = 82 – (4 * √2)2 = 64 – (16 * 2) = 32.

    ВЕ = √32 = (√16 * 2) = 4 * √2.

    Найдем площадь параллелограмма.

    S = AD * BE = (8 * √2) * (4 * √2) = 32 * 2 = 64 см2.

    Ответ: Площадь параллелограмма 64 см2.

    • Автор:

      levi49
    • 4 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years