Предмет:
МатематикаАвтор:
анонимЧтобы определить четность или нечетность функции, нужно вместо буквы х подставить (-х). Если у(х) = у(-х), значит, функция четная. Если у(х) = -у(-х), то функция нечетная.
1) y(х) = x^4/(x^2 + 20)
Найдем у(-х).
у(-х) = (-х)^4/((-х)^2 + 20).
(-х) в любой четной степени равен х в этой степени.
Поэтому (-х)^4/((-х)^2 + 20) = x^4/(x^2 + 20), то есть у(х) = у(-х). А это значит, что функция y(х) = x^4/(x^2 + 20) является четной.
2) y(х) = x + 2x^8 - 9.
Найдем у(-х).
y(-х) = -x + 2(-x)^8 - 9 = -x + 2x^8 - 9.
Получается, что у(х) не равно у(-х).
Попробуем вынести минус: y(-х) = -(x - 2x^8 + 9).
Получается, что у(х) не равно -у(-х).
Следовательно, функция y(х) = x + 2x^8 - 9 является ни четной, ни нечетной.
Автор:
rhiannahn7uДобавить свой ответ
Предмет:
ЛитератураАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
ЛитератураАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть