profile
Опубликовано - 2 месяца назад | По предмету Математика | автор Аноним

В прямоугольнике биссектриса прямого угла делит сторону на отрезки 42 см и 14 см.На какие отрезки эта биссектриса делит

  1. Ответ
    Ответ дан Прохорова Марина

    Обозначим прямоугольник буквами АВСД, СК - биссектриса угла С, ДК = 42 см, АК = 14 см. Пусть Е - точка пересечения биссектрисы СК и диагонали ВД.

    n

    Сторона АД равна сумме отрезков АК и ДК, АД = 42 + 14 = 56 см. ВС = АД = 56 см (в прямоугольнике противоположные стороны равны).

    n

    Треугольник ВСД прямоугольный, вычислим длину диагонали по теореме Пифагора: ВД = √(56^2 + 42^2) = √(3136 + 1764) = √4900 = 70 см.

    n

    Рассмотрим треугольники ВЕС и ДЕК: угол ВЕС равен углу ДЕК (вертикальные углы), угол ВСЕ равен углу ДКЕ (внутренние накрест лежащие углы при параллельных ВС и АД и секущей СК). Значит, треугольники подобны.

    n

    Вычислим коэффициент подобия: k = ВС/ДК = 56/42 = 4/3.

    n

    Значит, ВЕ относится к ДЕ как 4/3.

    n

    Пусть ВЕ = 4х, а ДЕ = 3х. Длина ВД равна 70 см, составляем уравнение:

    n

    4х + 3х = 70;

    n

    7х = 70;

    n

    х = 10.

    n

    Значит, ВЕ = 4 * 10 = 40 см. ДЕ = 3 * 10 = 30 см.

    n

    Ответ: биссектриса делит диагональ на отрезки 40 см и 30 см.

    0



Топ пользователи