Предмет:
МатематикаАвтор:
анонимНам нужно разложить на множители выражение (x + 3y)^2 - (3x - y)^2 для этого бы будем использовать формулу сокращенного умножения разность квадратов.
Давайте вспомним формулу. a^2 - b^2 = (a - b)(a + b);
Разность квадратов двух выражений равен произведению разности и суммы этих выражений.
В заданном выражении a = x + 3y, а y = 3x - y.
Применим формулу и получим выражение:
(x + 3y)^2 - (3x - y)^2 = (x + 3y - (3x - y))(x + 3y + 3x - y) = (x + 3y - 3x + y)(x + 3x + 3y - y) = (4y - 2x)(4x + 2y).
Ответ: (4y - 2x)(4x + 2y).
Автор:
flintramseyДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть