Предмет:
МатематикаАвтор:
анонимПреобразуем выражение в многочлен (a^2:5 - 15 * b)^2.
Используем формулу сокращенного умножения (x - y)^2 = x^2 - 2 * x * y + y^2.
Получаем:
(a^2:5 - 15 * b)^2 = (a^2/5 - 15 * b)^2 = (a^2/5)^2 - 2 * a^2/5 * 15 + (15 * b)^2 = a^4/25 - 2 * a^2 * 3 + 225 * b^2 = a^4/25 - 6 * a^2 + 225 * b^2;
В итоге получили, (a^2:5 - 15 * b)^2 = a^4/25 - 6 * a^2 + 225 * b^2.
Подобные примеры:
1) (3 * x - 2 * c)^2 = (3 * x)^2 - 2 * 3 * x * 2 * c + (2 * c)^2 = 9 * x^2 - 12 * x * c + 4 * c^2;
2) (x + 5 * z)^2 = x^2 + 2 * x * 5 * z + (5 * z)^2 = x^2 + 10 * x * z + 25 * z^2.
Автор:
sadielxdwДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть