• Найти сумму 19 первых членов арифметической прогрессии a1, a2, a3, ..., если известно, что a4 + a8 + a12 + a16 = 224.

Ответы 1

  • 1. Задана арифметическая прогрессия, для которой известно, что:

    So = A4 + A8 + A12 + A16 = 224;

    2. Раскроем эту сумму через A1 и D:

    So = (A1 + 3 * D) + (A1 + 7 * D) + (A1 + 11 * D) + (A1 + 15 * D) =

    4 * A1 + 36 * D = 4 8 (A1 + 9 * D) = 4 * A10;

    A10 = So / 4 = 224 / 4 = 56;

    3. Вычисляем сумму S19 первых членов прогрессии:

    S19 = (2 * A1 + D * (n - 1)) * n / 2 =

    ((2 * A1 + 18 * D) / 2) * 19 =(A1 + 9 * D) * 19 =

    19 * A10 = 19 * 56 = 1064.

    Ответ: сумма первых 19 членов арифметической прогрессии A(n) равна 1064.

    • Автор:

      rufoto6l
    • 3 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years