• Какой вид имеет производная этой функции? y=e^x*lnx

Ответы 1

  • Воспользовавшись основными формулами и правилами дифференцирования:

    (x^n)’ = n * x^(n-1).

    (e^x)’ = e^x.

    (ln x)’ = 1 / х.

    (с)’ = 0, где с – const.

    (с * u)’ = с * u’, где с – const.

    (uv)’ = u’v + uv’.

    y = f(g(x)), y’ = f’u(u) * g’x(x), где u = g(x).

    Таким образом, производная нашей данной функции будет следующая:

    f(x)\' = ((e^x) * (ln (x)))’ = (e^x)’ * (ln (x)) + (e^x) * (ln (x))’ = (e^x) * (ln (x)) + (e^x) * (1 / х) = (e^x) * (x^2) + (e^x) / x.

    Ответ: Производная нашей данной функции будет равна f(x)\' = (e^x) * (x^2) + (e^x) / x.

    • Автор:

      dawn
    • 2 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years