• Радиус шара равен 17 см. Найти площадь сечения шара плоскостью, которая удалена на 15 см от центра шара. Найти объем и площадь поверхности шара​

Ответы 1

  • Ответ:

    64π см²

    Пошаговое объяснение:

    Сечение шара - круг.

    О - центр шара, С - центр сечения.

    Отрезок, соединяющий центр шара с центром сечения, перпендикулярен плоскости сечения, поэтому

    ОС = 15 см - расстояние от центра шара до сечения.

    ОА = 17 см - радиус шара.

    ΔАОС: ∠АСО = 90°, по теореме Пифагора

    АС = √(ОА² - ОС²) = √(17² - 15²) = √(289 - 225) = √64 = 8 см

    Площадь сечения:

    S = πr², где r = АС - радиус сечения.

    S = π · 8² = 64π см²

    • Автор:

      kaden694
    • 2 года назад
    • 2
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years