• Дано 1/x*((x²+1)^0.5))Вычеслить его интеграл Я решил , это является нормальным решением или нет? Имею ввиду есть более короткий вариант.

    question img
    question img

Ответы 1

  • Ответ:

    Применяем тригонометрическую замену .

    \bf \displaystyle \int \frac{dx}{x\sqrt{x^2+1}}=\Big[\ x=tgt\ ,\ dx=\frac{dt}{cos^2t}\ ,\ \ x^2+1=tg^2t+1=\frac{1}{cos^2t}\ \Big]=\\\\\\=\int \frac{dt}{tgt\cdot \sqrt{\dfrac{1}{cos^2t}}\cdot cos^2t}=\int \frac{dt}{\dfrac{sint}{cost}\cdot \dfrac{1}{cost}\cdot cost}=\int \frac{cost\, dt}{sint}=\\\\\\=\Big[\ u=sint\ ,\ du=cost\, dt\ \Big]=\int \frac{d(sint)}{sint}=ln|sint|+C=\\\\\\=ln\, \Big|\, sin(arctgt)\, \Big|+C=ln\, \Big|\, \frac{x}{\sqrt{x^2+1}}\, \Big|+C  

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years