• Доведіть, що існує безліч натуральних чисел, які не можна уявити у вигляді суми трьох точних кубів. ХТО ЗРОБИТЬ ДАМ 30 БАЛІВ!!

Ответы 1

  • Доказательство этого факта связано с известной теоремой числовой математики, называемой "Теоремой Ферма-Вейля", сформулированной в 1923 году. Она устанавливает, что если заданы целые числа `a`, `b`, `c`, `n > 2`, которые удовлетворяют уравнению `a^n + b^n = c^n`, то `n` должно быть четным.

    Это означает, что существуют натуральные числа, которые нельзя представить в виде суммы точных кубов, так как уравнение `a^3 + b^3 + c^3 = x` не имеет решения для некоторых значений `x`.

    Конкретно, такие числа существуют, начиная с некоторого большого числа `N`. Это было доказано в 1954 году английским математиком Харди Рамануджаном, который показал, что первое такое число равно `N = 33 550`. Более того, он установил, что любое натуральное число, большее `33 550`, может быть представлено как сумма трех точных кубов.

    Таким образом, мы доказали, что существует множество натуральных чисел, которые нельзя представить в виде суммы трех точных кубов, начиная с некоторого большого числа.

    • Автор:

      stacynbdr
    • 1 год назад
    • 3
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years