• 100 балов! 6 класс Човен проплив відстань між двома пристанями за течією річки за 40 хв, а на зворотній шлях витратив у 2 рази більше часу. Знайдіть відстань між пристанями, якщо власна швидкість човна складає 12 км/год.

Ответы 2

  • Ответ:Нехай відстань між пристанями дорівнює D км.

    Тоді швидкість човна з течією дорівнює (12 + v) км/год, де v - швидкість течії річки.

    Швидкість човна проти течії дорівнює (12 - v) км/год.

    За формулою шлях = швидкість * час отримуємо:

    D = (12 + v) * (40/60)  ->  D = (2/3)(12 + v)

    На зворотній шлях човен проплив ту саму відстань D, але зі швидкістю (12 - v) км/год. Час подорожі туди й назад однаковий, тому зворотня подорож зайняла 2 * 40 = 80 хв або 4/3 год.

    D = (12 - v) * (4/3)

    Зіставляємо два отримані вирази для D:

    (2/3)(12 + v) = (4/3)(12 - v)

    Розв'язуємо рівняння відносно v:

    8v = 24    ->   v = 3 км/год

    Підставляємо v у будь-який з виразів для D:

    D = (2/3)(12 + 3) = 10 км.

    Отже, відстань між пристанями дорівнює 10 км.

    Пошаговое объяснение:

    • Автор:

      rosamoss
    • 1 год назад
    • 0
  • Ответ:

    Позначимо відстань між пристанями як d.

    За умовою задачі, човен проплив цю відстань на течії за 40 хв, тобто зі швидкістю:

    v1 = d / t1 = d / 40 км/год

    На зворотньому шляху човен витратив у 2 рази більше часу, тобто 80 хв. Нехай на зворотньому шляху швидкість човна є v2. Тоді за формулою відстань = швидкість × час, на зворотньому шляху човен проплив відстань d зі швидкістю v2:

    d = v2 × t2 = v2 × 80 км/год

    Ми знаємо, що швидкість човна відносно води складає 12 км/год. Оскільки течія річки сприяє руху човна в одному напрямку і гальмує його рух в іншому, то на течії швидкість човна дорівнює сумі швидкості човна відносно води і швидкості течії, а на зворотньому шляху - різниці цих швидкостей. Позначимо швидкість течії як v та складемо систему рівнянь для двох напрямків:

    v1 = 12 км/год + v

    v2 = 12 км/год - v

    Підставимо значення v2 у вираз для відстані d на зворотньому шляху:

    d = v2 × t2 = (12 км/год - v) × 80 хв = 960 км/год - 80v

    Підставимо значення v1 у вираз для відстані d на течії:

    d = v1 × t1 = (12 км/год + v) × 40 хв = 480 км/год + 40v

    Таким чином, маємо систему рівнянь:

    d = 480 км/год + 40v

    d = 960 км/год - 80v

    Розв'язуючи систему, знаходимо v = 3 км/год та d = 540 км.

    Відповідь: відстань між пристанями становить 540 км.

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years