• sin22x-sin2x=0,5помогите дам 40 балов срочно!!!!!​

Ответы 1

  • Ответ:

    To solve the equation sin(2x) + sin(2x) - sin(2x) = 0.5, we can use the double angle identity for sine, which states that sin(2x) = 2sin(x)cos(x). Substituting this identity into the equation, we get:

    2sin(x)cos(x) + 2sin(x)cos(x) - sin(2x) = 0.5

    Simplifying and using the identity sin(2x) = 2sin(x)cos(x), we get:

    4sin(x)cos(x) - 2sin(x)cos(x) = 0.5

    2sin(x)cos(x) = 0.5

    sin(x)cos(x) = 0.25

    Using the identity sin(2x) = 2sin(x)cos(x), we can also write this as:

    sin(2x) = 0.5

    Now we can use the inverse sine function to solve for x:

    2x = arcsin(0.5)

    2x = π/6 + 2πk or 2x = 5π/6 + 2πk, where k is an integer.

    Dividing both sides by 2, we get:

    x = π/12 + πk or x = 5π/12 + πk, where k is an integer.

    Therefore, the solutions to the equation sin(2x) - sin(2x) = 0.5 are:

    x = π/12 + πk or x = 5π/12 + πk, where k is an integer.

    • Автор:

      amoreodxd
    • 1 год назад
    • 1
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years