Предмет:
МатематикаАвтор:
grant6Ответ:
To solve the equation sin(2x) + sin(2x) - sin(2x) = 0.5, we can use the double angle identity for sine, which states that sin(2x) = 2sin(x)cos(x). Substituting this identity into the equation, we get:
2sin(x)cos(x) + 2sin(x)cos(x) - sin(2x) = 0.5
Simplifying and using the identity sin(2x) = 2sin(x)cos(x), we get:
4sin(x)cos(x) - 2sin(x)cos(x) = 0.5
2sin(x)cos(x) = 0.5
sin(x)cos(x) = 0.25
Using the identity sin(2x) = 2sin(x)cos(x), we can also write this as:
sin(2x) = 0.5
Now we can use the inverse sine function to solve for x:
2x = arcsin(0.5)
2x = π/6 + 2πk or 2x = 5π/6 + 2πk, where k is an integer.
Dividing both sides by 2, we get:
x = π/12 + πk or x = 5π/12 + πk, where k is an integer.
Therefore, the solutions to the equation sin(2x) - sin(2x) = 0.5 are:
x = π/12 + πk or x = 5π/12 + πk, where k is an integer.
Автор:
amoreodxdДобавить свой ответ
Предмет:
БиологияАвтор:
bruceclarkeОтветов:
Смотреть
Предмет:
Українська моваАвтор:
buckeyeОтветов:
Смотреть