• 3. Если сторону квадрата, периметр которого 64 см, уменьшить в 2 раза, то получится ширина прямоугольника, периметр которого 40 см. Чему равна площадь этого прямоугольника?​

Ответы 2

  • Периметр квадрата равен 4 * сторона. Значит, сторона квадрата равна 64 / 4 = 16 см.Если сторону квадрата уменьшить в 2 раза, то получится ширина прямоугольника, периметр которого равен 40 см. Значит, периметр прямоугольника равен 2 * (сторона + ширина) = 40. Поскольку ширина равна половине стороны квадрата, то сторона + ширина = 1.5 * сторона. Значит, 2 * 1.5 * сторона = 40, откуда сторона = 10 см, а ширина равна 5 см.Таким образом, площадь прямоугольника равна ширине * стороне = 5 * 10 = 50 кв. см.
  • Ответ:

    Периметр квадрата равен сумме длин всех его сторон. Так как у нас есть периметр, равный 64 см, то можно записать уравнение:

    4a = 64

    где a - длина стороны квадрата. Решая это уравнение, мы получим:

    a = 16

    Теперь, когда мы знаем длину стороны квадрата, можем вычислить его площадь:

    S = a^2 = 16^2 = 256 см^2

    Далее, нужно уменьшить сторону квадрата в два раза и использовать ее для расчета ширины прямоугольника. Пусть b - это ширина этого прямоугольника. Тогда у нас есть уравнение:

    2a + 2b = 40

    Заменяем a на 8 (ведь а после деления на 2 равно 16/2 = 8) и решаем уравнение относительно b:

    2 * 8 + 2b = 40

    16 + 2b = 40

    2b = 24

    b = 12

    Таким образом, ширина прямоугольника равна 12, а его длина равна 2a = 2 * 16 = 32.

    Площадь прямоугольника равна:

    S = a * b = 16 * 12 = 192 см^2. 

    Ответ: 192 см^2.

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years