Предмет:
МатематикаАвтор:
jeffreycunninghamОтвет:Для решения этой задачи, нам нужно разбить прямоугольник на два равнобедренных треугольника, используя диагональ, и затем использовать тригонометрию.
Длина диагонали, которая является гипотенузой двух равнобедренных треугольников, равна 26 см. Поэтому, каждая из двух более коротких сторон треугольника равна:
a = b = 26 / sqrt(2) ≈ 18,4 см
Угол между этой стороной и диагональю равен 30 градусов. Поэтому мы можем использовать тригонометрическую функцию синус, чтобы найти половину длины противоположной стороны треугольника:
sin(30°) = 1/2 = x / a
x = a/2 = 26 / (2 * sqrt(2)) ≈ 9,2 см
Теперь, чтобы найти периметр прямоугольника, мы можем просто сложить все его стороны:
P = 2a + 2b = 2(18,4) + 2(9,2) ≈ 55,2 см
Ответ: периметр прямоугольника равен примерно 55,2 см.
Пошаговое объяснение:
Автор:
tankypjpДобавить свой ответ
Предмет:
ОбществознаниеАвтор:
campbell98Ответов:
Смотреть
Предмет:
МатематикаАвтор:
chicaОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
diegoa8ehОтветов:
Смотреть