Предмет:
МатематикаАвтор:
jamarionnortonДля знаходження точки, симетричної до точки М(1; -2,6) відносно площини ху, можна скористатися формулою для симетричної точки відносно площини.
Ця формула має вигляд:
(x,y,z) → (x, -y, z)
Отже, щоб знайти координати симетричної точки відносно площини ху, потрібно замінити другу координату точки М(1; -2,6) на її протилежне значення.
Отримаємо:
М(1; -2,6) → М'(1; 2,6)
Отже, координати симетричної точки відносно площини ху дорівнюють (1; 2,6).
Автор:
estebanpzcsОтвет:
Для того, щоб знайти проекцію точки М на площину ху, необхідно спроектувати вектор МА на вектор нормалі площини ху. Вектор нормалі до площини ху - це вектор [0, 0, 1] (припускаючи, що площина ху знаходиться в позитивній півплощині z). Тоді:
МА = [1, -2, 0] - [1, -2, 6] = [0, 0, -6]
Проекція МА на вектор [0, 0, 1]:
proj = МА - (МА·n)·n = [0, 0, -6] - (0·0 + 0·0 + (-6)·1)·[0, 0, 1] = [0, 0, -6]
Таким чином, точка А має координати [1, -2, 0] + [0, 0, -6] = [1, -2, -6].
Координати точки B будуть дорівнювати середньому арифметичному координат точок М та А:
B = (М + А)/2 = ([1, -2, 6] + [1, -2, -6])/2 = [1, -2, 0]
Таким чином, точка B має координати [1, -2, 0].
Пошаговое объяснение:
Автор:
jacquelynfitzpatrickДобавить свой ответ
Предмет:
ГеометрияАвтор:
julianrogersОтветов:
Смотреть
Предмет:
Українська моваАвтор:
eduardoОтветов:
Смотреть
Предмет:
Английский языкАвтор:
emeryОтветов:
Смотреть