• Найти третий член возрастающей арифметической прогрессии, если известно, что сумма первых трёх её членов равна 27, а сумма их квадратов равна 275

Ответы 1

  • \begin{cases}a_2=a_1+d\\a_3=a_1+2d\end{cases}\Rightarrow \begin{cases}a_1+a_2+a_3=27\\ a_1^2+a_2^2+a_3^2=275\end{cases}\Leftrightarrow \begin{cases}a_1+a_1+a_1+d+2d=27\\a_1^2+\left ( a_1+d \right )^2+\left ( a_1+2d \right )^2=275\end{cases}\Leftrightarrow \\\Leftrightarrow \begin{cases}3a_1+3d=27\\a_1^2+\left ( a_1+d \right )^2+\left ( a_1+2d \right )^2=275\end{cases}\Leftrightarrow \begin{cases}a_1=9-d\\(9-d)^2+18d+d^2+81+81-275=0\end{cases}\Leftrightarrow\\\Leftrightarrow \begin{cases}a_1=9-d\\2d^2-23=0\end{cases}\Leftrightarrow \begin{cases}a_1=9-d\\d^2=16\end{cases}\Rightarrow d=4\Rightarrow a_1=5\Rightarrow a_3=5+8=13

    • Автор:

      cobygkuq
    • 1 год назад
    • 5
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years