• Со станции А и В вышли два поезда навстречу друг другу, причем второй из них вышел на полчаса позже первого. Через 2 часа после выхода первого поезда расстояние между поездами составляло 19/30 всего пути между А и В. Продолжая движение, они встретились на середине пути между А и В. Сколько времени потребуется каждому поезду, чтобы пройти весь путь между конечными станциями?

Ответы 1

  • Ответ:

    между станциями А и В за Х.

    Первый поезд стартовал на полчаса раньше второго, поэтому время, которое прошло с момента отправления первого поезда до встречи, равно 2 - 0.5 = 1.5 часа.

    Мы знаем, что через 2 часа после отправления первого поезда расстояние между поездами составляло 19/30 всего пути. Это значит, что расстояние, которое прошел первый поезд за 2 часа, равно 19/30 * X.

    Также дано, что они встретились на середине пути. Поэтому расстояние, которое прошел первый поезд с момента встречи до конечной станции В, равно 1/2 * (X - 19/30 * X) = 11/60 * X.

    Теперь мы можем составить уравнение:

    расстояние, пройденное первым поездом = время, затраченное на прохождение первым поездом * скорость первого поезда.

    19/30 * X + 11/60 * X = время, затраченное на прохождение первым поездом * скорость первого поезда.

    Учитывая, что скорость = расстояние / время, получим:

    19/30 * X + 11/60 * X = время, затраченное на прохождение первым поездом * (X / (1.5 + время, затраченное на прохождение первым поездом)).

    Решая это уравнение, найдем время, затраченное на прохождение первым поездом. А затем найдем время, затраченное на прохождение вторым поездом.

    После нахождения времени, затраченного каждым поездом, мы можем добавить время задержки второго поезда (0.5 часа), чтобы получить общее время, затраченное каждым поездом, чтобы пройти весь путь между конечными станциями.

    • Автор:

      zoiehr7m
    • 1 год назад
    • 7
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years