\Рис. 1.1. Схема вычисления стандартных оценок (стенов) по фактору N 16-факторного личностного опросника Р.Б. Кеттелла; внизу указаны интервалы в единицах Ѕ стандартного Как видно из табл. 2, мы правильно обозначили ряды: первый тот, что "выше" - ряд горожан, а второй, тот, что "ниже” - ряд сельчан. По табл. 2. определяем количество значений первого ряда, которые больше максимального значения второго ряда: S1=3. Теперь определяем количество значений второго ряда, которые меньше минимального значения первого ряда: S2=5. Вычисляем по формуле:Qэмп =S1+S2=3 + 5 =8По табл.1 Приложения 1 определяем критические значения Q для n1=11, n2=12;Правило отклонения Н0 в принятия Н1Если эмпирическое значение критерия равняется критическому значению,cответствующему р≤0,05 или превышает его, то Н0 отклоняется, но мы еще не можем определенно принять Н1. Если эмпирическое значение критерия равняется критическому значению, соответствующему р≤0,01 или превышает его, то Н0 отклоняется и принимаетсяH1.Рис 1. ось значимости для критерии Q РазенбаумаЭмпирическое значение критерия попадает в область между Q0,05 и Q0,01. Это зона "неопределенности": мы уже можем отклонить гипотезу о недостоверности различий (Н0), но еще не можем принять гипотезы об их достоверности (H1).Ответ: мы уже можем отклонить гипотезу о недостоверности различий интеллекта между городскими и сельскими жителями(Н0), но еще не можем принять гипотезы об их достоверности (H1). ^ Как рассчитать коэффициент корреляции Спримена, если мы имеем одинаковые ранги?Поскольку в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов, перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые ранги Та и Тb:Та=∑(а3-а)/12Тb=∑(b3-b)/12где a - объем каждой группы одинаковых рангов в ранговом ряду А, b - объем каждой группы одинаковых рангов в ранговом ряду В. Для подсчета эмпирического значения гs используем формулу:rs=1-6При больших количествах одинаковых рангов изменения rs могут оказаться гораздо более существенными. Наличие одинаковых рангов означает меньшую степень днфферентдкрованностк упорядоченных переменных и, следовательно, меньшую возможность оценить степень связи между ними.1 Определения и формулы расчета М и σ даны в параграфе «Распределение признака. Параметры распределения».