• Найти объем продукции, произведенной за период [0;34], если функция Кобба-Дугласа имеет вид f(t)=(170+5t)e^t/68
     Методом интегрирования по частям

Ответы 1

  • \int\limits_0^{34}(170+5t)e^{t/68 }\,dt=68\int\limits_0^{34}(170+5t)\,de^{t/68}=68(170+5t)e^{t/68}|_0^{34}-\\-68\cdot5\int\limits_0^{34}e^{t/68}\,dt=11560(2\sqrt e-1)-23120(\sqrt e-1)=34680
    • Автор:

      amos
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years