• Решите неравенство:
    (2m+3)2(3m-6)3(4m-1)2>0
    Все то,что за скобками,пишется сверху,тобиш "в квадрате,кубе".

Ответы 1

  • (2m+3)^2(3m-6)^3(4m-1)^2>0Для того, чтобы неравенство выполнялось, нужно, чтобы все множители (скобки в степени) были положительны. Множители в квадрате всегда положительны или равны нулю, т.к. степени чётные. Множитель в кубе может быть и положительным, и отрицательным, и равным нулю, т.к. степень нечётная. Нам нужно выполнение трёх условий:1) первый множитель не равен нулю2) второй множитель > 03) третий множитель не равен нулю.\begin{cases}2m+3eq0\\3m-6>0\\4m-1eq0\end{cases}\Rightarrow\begin{cases}meq-\frac32\\m>2\\meq\frac14\end{cases}\Rightarrow m\in(2;\;+\infty)
    • Автор:

      sofía16
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years