• на какое наименьшее количество прямоугольников(не обязательно одинаковых)с периметром 1 см можно разрезать квадрат со стороной 2 см
    -20
    -15
    -16
    -12
    или 18?
    заранее спасибо)

Ответы 5

  • Во теперь правильно! Но ответ все равно не изменился ха!
  • Да спасибо вам! А я ведь не заметил!
    • Автор:

      wallace
    • 5 лет назад
    • 0
  • да интересно, я самого начало думал что то не так в последней части решения то есть не подходило не укладывалась в сумму , теперь нашел ошибку в самом начале , я что то тоже взял что сторон сумма сторона равна 0,5
  • Ну да
  • Из всех  прямоугольников c данным периметром  найдем прямоугольник   наибольшей  площади:2(a+b)=2a=1 -b S=ab=b(1-b)=-b^2+b Это   квадратичная   функция ,ее   максимум в вершине  параболы  b max=1/2Откуда a=b=1/2  тк 2  при делении 2/ 1/2=4(4 квадратиков  по 1 линии) то    эти маленькие квадратикивсе  помещаются в квадрат 2*2.Чтобы  число  прямоугольников было наименьшим нужно   использовать как можно   больше прямоугольников   наибольшей площади,то   есть   квадратов  со стороной 1/2. Нам   повезло  тк все эти квадраты можно вместить в наш квадрат 2*2  без свободных   мест,поэтому для   наименьшего   количества  впихнем как   раз  все  эти квадраты,всего   их будет 4*4=16  Ответ 16
    • Автор:

      briggs
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years