1) 3√(3 2/3)-√132+4√(2 1/16)=3√(11/3)-2√33+4√33/4=3√(11/3)-√33=√33-√33=02)(1/(√b-1)-1/(b-√b))*√b/(√b+2)+4/(b-4)(1/(√b-1)-1/(b-√b)=(1/(√b-1)-1/√b(√b-1)=(√b-1)/√b(√b-1)=1/√b1/√b*√b/(√b+2)+4/(b-4)=1/(√b+2)+4/(√b-2)(√b+2)=(√b-2+4)/(√b-2)(√b+2)=(√b+2)/(√b-2)(√b+2)=1/(√b-2)b>43) (8/(a-4)+1/(2-√a)+2/(√2+√a):1/(√a(√a-4)+4)8/(a-4)+1/(2-√a)+2/(2+√a)=8/(√a-2)(√a+2)-1/(√a-2)+2/(2+√a)=(8-√a-2+2√a-4))/(√a-2)(√a+2)==(2+√a)/(√a-2)(√a+2)=1/(√a-2)1/(√a-2):1/(√a(√a-4)+4)=1/(√a-2)*(a-4√a+4)=(√a-2)^2/(√a-2)=√a-2