• Помогите посчитать пожалуйста.
    Интеграл от dx/(sinx+cosx)

Ответы 2

  • Спасибо огромное!
    • Автор:

      calhoun
    • 5 лет назад
    • 0
  • \int \frac{dx}{sinx+cosx}=[\, t=tg\frac{x}{2},sinx=\frac{2t}{1+t^2},cosx=\frac{1-t^2}{1+t^2},dx=\frac{2dt}{1+t^2}\, ]=\\\\=\int \frac{\frac{2dt}{1+t^2}}{\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}}=\int \frac{2\, dt}{-(t^2-2t-1)}=-2\int \frac{dt}{(t-1)^2-2}=[v=t-1,dv=dt]=\\\\=-2\int \frac{dv}{v^2-2}=-2\cdot \frac{1}{2\sqrt2}\cdot ln|\frac{v-\sqrt2}{v+\sqrt2}|+C=-\frac{1}{\sqrt2}\cdot ln|\frac{tg\frac{x}{2}-1-\sqrt2}{tg\frac{x}{2}-1+\sqrt2}|+C==\frac{1}{\sqrt2}\cdot ln\, |\frac{tg\frac{x}{2}-1+\sqrt2}{tg\frac{x}{2}-1-\sqrt2}|+C
    • Автор:

      angus
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years