a) tgx >1 πn +π/4 < x < π/2 + πn , n ∈ Z.---------------------------------------------------------------x ∈ об единение интервалов ( πn +π/4 ; π/2 +πn );*****************************************************************π/4 < x < π/2 ; 2πk+π/4 < x < π/2 + 2πk ;2k*π+ π/4 < x < π/2 + 2k*π (1) 2k _четное число .-------------------------------------------π+ π/4 < x <3π/2 ;π+ π/4 < x < π/2 + π ;2πk+π+ π/4 < x < π/2 + π +2πk ;(2k+1)π + π/4 < x < π/2 + (2k+1)π (2)(2k+1)__нечетное число . πn +π/4 < x < π/2 + πn , n ∈ Z.******************************************************************б) сos x≤0 .2πk + π/2 ≤ x ≤ 3π/2 +2πk , k∈ Z.в) ctgx <1.πk+ π/4 < x < π +πk г) sinx ≥0 .πk ≤ x ≤ (2k +1)π ; k∈ Z---------------------------------------------2πk+0 ≤ x ≤ π + 2πk ; k∈ Z.2πk ≤ x ≤ π + 2πk ; k∈ Z.2πk ≤ x ≤ (2k +1)π ; k∈ Z---------------------------------------