• Помогите решить!!!!СРОЧНО (! a-это АЛЬФА,B-это бетта ) первое зад. :докажите тождество 1-tg a / 1+tg a = tg(45º-a) второе зад. :Вычислите 1)зная,что tg a = 3 и tg (a-B) =1,вычислите tg B. 2)зная,что tg a =1/4 и tg (a-B) =2,вычислите tg B. третье зад. : Известно,что cos a = 3/5, 0< a < 3П/2 Вычислите: а) tg ( a+П/3) б) tg (a-5П/4)

Ответы 1

  • 1) \frac{1-tga}{1+tga}= tg(45-a)\\ \frac{1-tga}{1+tga}= \frac{tg45-tga}{1+tg45tga}\\ \frac{1-tga}{1+tga}= \frac{1-tga}{1+tga}\\

    верно

     

    2) tg(a-B) = \frac{tga-tgB}{1+tga\cdot tgB}

    подставляем tga =3

    tg(a-B) = \frac{tga-tgB}{1+tga\cdot tgB}=1\\ \frac{tga-tgB}{1+tga\cdot tgB}=1\\ \frac{3-tgB}{1+3\cdot tgB}=1\\ 3-tgB=1+3tgB\\ 4tgB=2\\ tgB = \frac{1}{2}

     

    аналогично следующая

    tg(a-B) = \frac{tga-tgB}{1+tga\cdot tgB}=2\\ \frac{tga-tgB}{1+tga\cdot tgB}=2\\ \frac{\frac{1}{4}-tgB}{1+\frac{1}{4}\cdot tgB}=2\\ \frac{1}{4}-tgB=2+\frac{1}{2}tgB\\ \frac{3}{2}tgB=-\frac{7}{4}\\ tgB = -\frac{7}{6}

     

    3) Поскольку косинус положительный, то угол принадлежит первой четверти. Значит все остальные функции тоже положительные.

    Найдем синус:

    sina=\sqrt{1-cos^{2}a}= \sqrt{1-\frac{9}{25}}= \frac{4}{5}

    Разложим формулы тангенса и подставим значения синуса и косинуса:

    tg(a+\frac{\pi}{3}) = \frac{tga+tg\frac{\pi}{3}}{1-tgatg\frac{\pi}{3}}= \frac{tga+\sqrt{3}}{1-\sqrt{3}tga} = \frac{\frac{sina}{cosa}+\sqrt{3}}{1-\sqrt{3}\frac{sina}{cosa}}=\frac{\frac{4}{5}\cdot \frac{5}{3}+\sqrt{3}}{1-\sqrt{3} \cdot \frac{4}{5} \cdot \frac{5}{3}} = \frac{\frac{4}{3}+\sqrt{3}}{1-\frac{4}{3}\sqrt{3}}

    tg(a-\frac{5\pi}{4}) = \frac{tga-tg\frac{5\pi}{4}}{1+tgatg\frac{5\pi}{4}}= \frac{tga-1}{1-tga} = - \frac{1-tga}{1-tga} = -1

    • Автор:

      ayla95
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years