Найти все неотрицательные значения параметра a, при каждом из которых неравенство выполняется для всех значений x:
a^3*x^4+6*a^2*x^2-x+9a+3>=0
Желательно как можно подробней расписать решение.
Дискриминанты этих квадратных множителей равны и соответственно. Значит, при a>0 второй множитель не имеет корней и всегда положителен (т.к. его дискриминант отрицателен), а первый множитель неотрицателен при любых х только в случае , т.е. . Ответ: