• найдите сумму целых решений неравенства
    (3x²+22x+41)/(x²+6x+8) ≤0

Ответы 6

  • блин, не много не так условие записал, там надо (3х²+22х+41) / (х²+6х+8) ≤2
    • Автор:

      rhianna
    • 6 лет назад
    • 0
  • реши пожалуйста
  • очень нада
    • Автор:

      elisha
    • 6 лет назад
    • 0
  • смотри ))
    • Автор:

      ruthmoran
    • 6 лет назад
    • 0
  • спасибо большое
    • Автор:

      moody
    • 6 лет назад
    • 0
  •  \frac{3x^2+22x+41}{x^2+6x+8} \leq 2 \frac{3x^2+22x+41}{x^2+6x+8} -2\leq 0\frac{3x^2+22x+41-2x^2-12x-16}{x^2+6x+8} \leq 0\frac{x^2+10x+25}{x^2+6x+8} \leq 0D=36-32=4x1= - 2x2= - 4\frac{(x+5)^2}{(x+2)(x+4)} \leq 0решаем методом интервалов и получаем  x∈(- 4; - 2) {-5}Ответ: - 8
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years