• Найдите увеличенную в 4 раза сумму корней уравнения (4x+7)^2 · (2x+3)(x+2)=34

Ответы 1

  • (4x + 7)^2 * (2x + 3)(x + 2) = 34(16x^2 + 56x + 49) * (2x^2 + 7x + 6) = 3432x^4 + 112x^3 + 98x^2 + 112x^3 + 392x^2 + 343x + 96x^2 + 336x + 294 = 3432x^4 + 224x^3 + 586x^2 + 679x + 260 = 0По теореме Виета для уравнений 4 степени{ x1 + x2 + x3 + x4 = -b/a = -224/32 = -7{ x1*x2 + x1*x3 + x1*x4 + x2*x3 + x2*x4 + x3*x4 = c/a = 586/32 = 293/16{ x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4 = -d/a = -679/32{ x1*x2*x3*x4 = e/a = 260/32 = 65/8Ответ: -7*4 = -28Можно решить и более по-школьному(16x^2 + 56x + 49) * (2x^2 + 7x + 6) = 34(8(2x^2 + 7x) + 49) * (2x^2 + 7x + 6) = 34Замена 2x^2 + 7x = y(8y + 49)*(y + 6) - 34 = 08y^2 + 97y + 294 - 34 = 08y^2 + 97y + 260 = 0D = 97^2 - 4*8*260 = 9409 - 8320 = 1089 = 33^2y1 = (-97 - 33)/16 = -130/16 = -65/8y2 = (-97 + 33)/16 = -4Обратная замена1) 2x^2 + 7x = -65/816x^2 + 56x + 65 = 0D/4 = 28^2 - 16*65 = 784 - 1040 = -256 = (16i)^2 < 0Действительных решений нет. Комплексные решенияx1 = (-28 - 16i)/16 = -7/4 - ix2 = (-28 + 16i)/16 = -7/4 + i2) 2x^2 + 7x = -42x^2 + 7x + 4 = 0D = 7^2 - 4*2*4 = 49 - 32 = 25x1 = (-7 - 5)/4 = -3x2 = (-7 + 5)/4 = -1/2Сумма корней -3 - 1/2 - 7/4 - i - 7/4 + i = -7Ответ: -7*4 = -28Но если учитывать только действительные решения, то получаетсяСумма корней -3 - 1/2 = -3,5Ответ: -3,5*4 = -14
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years