• найти сумму бесконечной геометрической прогрессии, если 4√2; 4; 2√2;... найти S-?

Ответы 1

  • b_1=4\sqrt{2}; b_2=4;\\q=\frac{b_2}{b_1}=\frac{4}{4\sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2};\\|q|<1;

    следовательно данная геометрическая прогрессия убывающая, по формуле суммы членов бесконечной убывающей геометричесской прогресиии

    S=\frac{b_1}{1-q}=\frac{4\sqrt{2}}{1-\frac{1}{\sqrt{2}}}=\frac{4\sqrt{2}*\sqrt{2}}{\sqrt{2}-1}=\frac{8}{\sqrt{2}-1}=\frac{8*(\sqrt{2}+1)}{2-1}=8*(\sqrt{2}+1)

    • Автор:

      luci
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years