• На острове живут рыцари и лжецы. Рыцари всегда говорят только правду, лжецы – всегда лгут. По кругу сидят рыцари и лжецы – всего 12 человек. Каждый из них сделал заявление: "Все, кроме, быть может, меня и моих соседей – лжецы". Сколько рыцарей сидит за столом, если известно, что лжецы всегда врут, а рыцари всегда говорят правду?

Ответы 2

  • спс тебе Лиза 
    • Автор:

      león82
    • 6 лет назад
    • 0
  • Все не могут быть лжецами – тогда все заявления были бы истинными. Значит, есть рыцарь. Все, кроме, быть может, его двух соседей – лжецы. Оба соседа не могут быть лжецами – тогда они сказали бы правду; оба не могут быть рыцарями – тогда бы они солгали. Единственная оставшаяся возможность – один сосед — лжец, другой – рыцарь (то есть два рыцаря рядом, остальные — лжецы) удовлетворяет условиям задачи. Ответ: 2 рыцаря. 
    • Автор:

      bernabé
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years