• ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ! 9 КЛАСС!
    Найти q, если b5–b1=9 и b1+b3=3

Ответы 1

  • b_{n}=b_1\cdot q^{n-1}\\\\ \left \{ {{b_5-b_1=9} \atop {b_1+b_3=3}} ight. \; ,\;  \left \{ {{b_1q^4-b_1=9} \atop {b_1+b_1q^2=3}} ight. \; ,\;  \left \{ {{b_1(q^4-1)=9} \atop {b_1(q^2+1)=3}} ight. \; ,\;  \left \{ {{b_1=\frac{9}{q^4-1}} \atop {b_1=\frac{3}{q^2+1}}} ight. \\\\\frac{9}{q^4-1}=\frac{3}{q^2+1}\; ;\; \; \frac{9}{3}=\frac{(q^2-1)(q^2+1)}{q^2+1}\; ;\; \; 3=q^2-1\; ,\; \; q^2=4\; ,\; \; q=\pm 2
    • Автор:

      wagner43
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years