• Помогите плиз с производной [tex]y=x^{x+1}[/tex]

Ответы 2

  • спасибо))
    • Автор:

      krueger
    • 6 лет назад
    • 0
  • y=x^{x+1}=(e^{lnx})^{x+1}=e^{(x+1) lnx}y'=(e^{(x+1) ln x})'=e^{(x+1)ln x}*((x+1)ln x)'=\\\\x^{x+1}*((x+1)'ln x+(x+1)*(ln x)')=\\\\x^{x+1}*(1*ln x+(x+1)*\frac{1}{x})=x^{x+1}*(ln x+\frac{x+1}{x})=\\\\x^{x+1}(ln x+1+\frac{1}{x})
    • Автор:

      dennis
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years