1.
(x+3)}{ \sqrt{3x}-3 } )= \\ =lim_{x \to \3} (- \frac{( \sqrt{x} - \sqrt{3} )( \sqrt{x} + \sqrt{3} )(x+3)}{ \sqrt{3}( \sqrt{x} - \sqrt{3} ) } ) = \\ \\
= \lim_{x \to \3} (- \frac{( \sqrt{x} + \sqrt{3} )(x+3)}{ \sqrt{3}} )=- \frac{( \sqrt{3}+ \sqrt{3} )(3+3)}{ \sqrt{3} }= \\ \\
=- \frac{2 \sqrt{3}*6 }{ \sqrt{3} }=-12 )
2.
= \lim_{x \to \1} ( \frac{1}{x-1}- \frac{2}{(x-1)(x+1)} )= \\ \\
= \lim_{x \to \1} ( \frac{x+1-2}{(x-1)(x+1)} )= \lim_{x \to \1} \frac{x-1}{(x-1)(x+1)}= \\ \\
= \lim_{x \to \1} \frac{1}{x+1}= \frac{1}{1+1}= \frac{1}{2}=0.5 )
3.Разложим x²+3x-10 на множители:x²+3x-10=0D=9+40=49x₁=(-3-7)/2= -5x₂=(-3+7)/2=2x²+3x-10=(x+5)(x-2)
(x-2)}{x+5}= \\ \\
= \lim_{x \to \--5} (x-2)=-5-2=-7 )
4.
= \\ \\
= \lim_{x \to \ \frac{ \pi }{4} } (- \frac{cosx-sinx}{(cosx-sinx)(cosx+sinx)} )= \lim_{x \to \ \frac{ \pi }{4} } (- \frac{1}{cosx+sinx} )= \\ \\
=- \frac{1}{cos \frac{ \pi }{4}+sin \frac{ \pi }{4} }=- \frac{1}{ \frac{ \sqrt{2} }{2}+ \frac{ \sqrt{2} }{2} }= - \frac{1}{ \sqrt{2} }= - \frac{ \sqrt{2} }{2} )
5.
+(x-1)}= \lim_{x \to \ 1} \frac{(x-1)(x^2+x+1)}{(x-1)(x^2+x+1)+(x-1)}= \\ \\
= \lim_{x\to \ 1} \frac{(x-1)(x^2+x+1)}{(x-1)(x^2+x+1+1)}= \lim_{x \to \ 1} \frac{x^2+x+1}{x^2+x+2}= \\ \\
= \frac{1^2+1+1}{1^2+1+2}= \frac{3}{4}=0.75 )
6.Разложим на множители:3x²+2x-1=0D=4+12=16x₁=(-2-4)/6=-1x₂=(-2+4)/6=2/6=1/33x²+2x-1=3(x+1)(x - ¹/₃) = (x+1)(3x-1)Разложим на множители:2x²+x-1=0D=1+8=9x₁=(-1-3)/4=-1x₂=(-1+3)/4=2/4=1/22x²+x-1=2(x+1)(x-¹/₂)=(x+1)(2x-1)
(3x-1)}{(x+1)(2x-1)}= \\ \\ = \lim_{x \to \ -1} \frac{3x-1}{2x-1}= \frac{3*(-1)-1}{2*(-1)-1}= \frac{-4}{-3}=4/3=1 \frac{1}{3} )
7.