• 100 баллов. Требуется развернуто ответить на все поставленные вопросы, иначе ответ не принимается за верный. Приращение функции. В учебнике логически верно сразу после формулы (1) выводится утверждение: дельта f есть функция от дельта х при фиксированном значении х0. Вопросы: почему это верное утверждение не работает ни на одном из приведенных примеров и что конкретно в данном случае понимается под фиксированным значением х0?

    question img

Ответы 6

  • вообще уже не соображаю
    • Автор:

      jettwidj
    • 5 лет назад
    • 0
  • а, понял
  • ну ладно, тогда принимаем ответ
    • Автор:

      tonyntse
    • 5 лет назад
    • 0
  • Да, Vasily1975 говорит верно: при фиксированном х0 приращение Δf как функция от Δx вовсе не обязано совпадать с функцией f(х). Это другая функция. В учебнике и нигде не сказано, что они должны совпадать. Там ведь просто сказано " Δf есть функция от Δх", а какая именно - не сказано. Так что ответ верный.
  • ну вот в конце, когда была озвучена идея о несовпадении функций, и было выражено согласие. я ж теперь по этому поводу не спорю
  • Δf(x)=f(x0+Δx)-f(x0). Если f(x)=x², то Δf=f(x0+Δx)-f(x0)=(x0+Δx)²-x0²=2*x0*Δx+(Δx)². Если теперь зафиксировать x0, то Δf  будет функцией от Δx.
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years