• Можно развернутое решение.. заранее огромное спасибо).

    Докажите, что при х принадлежит [tex](0;\pi/2)[/tex] справедливо неравенство sinx>xcosx. 

Ответы 1

  • Решение: Рассмотрим функцию f(x)=sin x-x*cos(x) на промежутке [0; pi\2]. Она непрерывна на этом промежутке и для каждого х из этого промежутка существует проиводная. Ищем проиводную: f’(x)=cos x-cos x+x*sin x=x*sin x f’(x)>0 на промежутке (0; pi\2),значит f(x) возрастает на (0; pi\2), f(0)=sin 0+0*cos 0=0 f(0)=0 Значит при х є (0; pi\2) f(x)>f(0)=0 или sin x-x*cos(x)>0, то есть sinx>xcosx, что и требовалось доказать.
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years