• log(1\5) (x-10) - log(1\5) (x+2) >= -1

Ответы 1

  • log(1\5) (x-10) - log(1\5) (x+2) ≥ -1         Область определения: х-10>0                                       х+2>0                                       х>10                                       х>-2, в общем, х>10.log(1\5) (x-10) - log(1\5) (x+2) ≥ -1   превратим единичку в loglog(1\5) (x-10) - log(1\5) (x+2) ≥log(1\5)(5) укомпактим разницуlog(1\5)(числх-10знамх+2)≥log(1\5)(5) уберём логарифмы, но                                        учтём, что основание меньше единички,                                       то есть знак повернётся(х-10)/(х+2)≤5     умножим обе части на х+2х-10≤5(х+2)        раскроем скобочких-10≤5х+10        найдём икс-4х≤20х≥5. Поскольку ОДЗ нас обязывает не брать числа, которые меньше или равняются десятке, то в ответ пойдут только больше десяти.Ответ: х∈(10;+∞).
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years