1) tg^2x-3tgx=0tgx(tgx - 3) = 0tgx = 0 или tgx - 3 = 0x = πk , k ∈Z tgx = 3 x = arctg3 + πn , n ∈Z 2) 4sin3x=3cos3x | : Cos3x ≠ 0 4tg3x = 3 tg3x = 3/4 3x = arctg3/4 + πk , k ∈ Z x = 1/3arctg3/4 +1/3πk , k ∈ Z 3) 3sinx+cosx=33*2Sinx/2Cosx/2 + Cos²x/2 - Sin²x/2 = 3*(Sin²x/2 + Cos²x/2)6Sinx/2Cosx/2 + Cos²x/2 - Sin²x/2 = 3Sin²x/2 + 3Cos²x/26Sinx/2Cosx/2 + Cos²x/2 - Sin²x/2 - 3Sin²x/2 - 3Cos²x/2 = 06Sinx/2Cosx/2 -2 Cos²x/2 - 4Sin²x/2 = 0 | : Cos²x/26tgx/2 -2 -4tg²x/2 = 02tg²x/2 -3tgx/2 +1 = 0tgx/4 = t2t² -3t +1 = 0t₁ =1, t₂=1/2a) tgx/2 = 1 б) tgx/2 = 1/2x/2 = π/4 + πk , k ∈Z x/2 = arctg1/2 + πn , n∈Zx = π/2 +2πk ,k∈Z x = 2arctg1/2 + 2πn , n∈Z 4) cos x/2+sin x/2=0 | : Сosx/2≠0 1 + tgx/2 = 0 tgx/2 = -1 x/2 = -π/4 + πk , k ∈Z x = -π/2 + 2πk , k ∈Z