• z=z₁/z₂+z₃

    z₁=-3-2i
    z₂=1+9i
    z₃=-6+i
    z=?

Ответы 2

  • А как найти модуль и аргумент из таких чисел?
  • \displaystyle Z= \frac{z_1}{z_2}+z_3\\\\Z= \frac{-3-2i}{1+9i}+(-6+i)= \frac{(-3-2i)(1-9i)}{(1^2-(9i)^2)}+(-6+i)=\\\\= \frac{-3-2i+27i+18i^2}{1-81i^2}+(-6+i)=\\\\= \frac{-3+25i-18}{1+81}+(-6+i)= \frac{25i-21}{82}+ \frac{82(-6+i)}{82}=\\\\= \frac{25i-21-492+82i}{82}= \frac{107i-513}{82}= \frac{107}{82}i- \frac{513}{82}
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years