• Найти площадь фигуры ограниченной параболой y=x^2-3x=4 и прямой y=4-x

Ответы 2

  • Первая функция:

    y=x^2-3x-4;\\y=(x-3/2)^2-25/4

    Это парабола направленная вверх, координаты вершины (3/2;-25/4), точки пересечения с осями: y(0)=-4\\x(0)=б5/2+3/2=\left[\begin{array}{ccc}-1\\4\\\end{array}

    Пересечение двух уравнений:

    x^2-3x-4=4-x\\(x-1)^2-9\\x=б3+1=\left[\begin{array}{ccc}x_1=-2\\x_2=4\\\end{array}

    y_1=4-(-2)=6\\y_2=4-4=0

    S=S₀-S₁-S₂

    S_0=(4-(-2))*(6-(-6.25))=6*12.25=73,5\\S_1=(4-(-2))*(6-0)/2=6*3=18\\x^2-3x-4=(x-3/2)^2-25/4\\\int_{}\left(x-\frac{3}{2}ight)^2dx=\frac{(x-3/2)^3}{3} =\frac{x^3-3x^2*3/2+3x*9/4-27/8}{3}=\\=x^3/3-3x^2/2+9x/4-9/8+c=F\\S_2=\int_{-2}^4\left(x-\frac{3}{2}ight)^2dx=F(4)-F(-2)=64/3-24+9-\\9/8-(-8/3-6-9/2-9/8)=-15+(64*8-9*3)/24-\\(-6+(-64-108-27)/24)=-15+485/24+6+\\199/24=-9+684/24=-9+28,5=19,5\\S=73,5-18-19,5=54-18=36

    Ответ: 36.

    answer img
    • Автор:

      vaughn40
    • 6 лет назад
    • 0
  • что вычислить площадь данной фигуры ,вычтем из площади под графиком прямой площадь ,того ,что под параболой . после поднятия . фигура должна быть выше оси Х

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years