• 4-4(cosx-sinx)-sin2x=0​

Ответы 6

  • arcsin(-x) = - arcsin(x)
  • ответ должен быть 2Pin; -pi/2+2pin; n - из Z
  • но я понял, спасибо большое
    • Автор:

      jazz
    • 5 лет назад
    • 0
  • Решение правильное, просто в ответе рассмотрены (в =учебнике) 2 случая: 1) при n = 2k, будет 2рk; 2) при n = 2k-1, будет -p/2 + 2pk.
    • Автор:

      thompson
    • 5 лет назад
    • 0
  • буду очень благодарен если объясните: 1) cosx - sinx = 1; √2sin(x - π/4) = -1;
    • Автор:

      trinidad
    • 5 лет назад
    • 0
  • 4 - 4(cosx - sinx) - sin2x = 0;

    3 - 4(cosx - sinx) + 1 - sin2x = 0;

    3 - 4(cosx - sinx) + (cosx - sinx)² = 0;

    (cosx - sinx)²- 4(cosx - sinx) + 3 = 0 - квадратное уравнение относительно cosx - sinx.

    По т. обратной к т. Виета имеем:

    cosx - sinx = 1 или cosx - sinx = 3.

    1) cosx - sinx = 1; √2sin(x - π/4) = -1; sin(x - π/4) = -1/√2;

    x - π/4 = (-1)ⁿarcsin(-1/√2) + πn, n∈Z; x - π/4 = (-1)ⁿ⁺¹arcsin1/√2 + πn, n∈Z;

    x₁ = (-1)ⁿ⁺¹π/4 + π/4 + πn, n∈Z.

    2) cosx - sinx = 3; √2sin(x - π/4) = -3; sin(x - π/4) = -3/√2 - не имеет решения.

    Ответ: (-1)ⁿ⁺¹π/4 + π/4 + πn, n∈Z.

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years