1. (3x^6 - 4x^4 + 1.2x^3 - √7)' = (3x^6)' - (4x^4)' + (1.2x^3)' - (√7)' = 3*(x^6)' - 4*(x^4)' + 1.2*(x^3)' - 0 = 3*6x^5 - 4*4x^3 + 1.2*3x^2 = 18x^5 - 16x^3 + 3.6x^22. (x/4 + 4/x - √x)' = (x/4)' + (4/x)' - (√x)' = (1/4)*(x)' + 4*(1/x)' - 1/(2√x) = (1/4)*1 + 4*(-1/x^2) - 1/(2√x) = 1/4 + -4/x^2 - 1/(2√x)3. (2x - 2/x^2 + 7.6)' = (2x)' - (2/x^2)' + (7.6)' = 2*(x)' - 2*(1/x^2)' + 0 = 2*1 - 2*(-2/x^3) = = 2 + 4/x^34. (3x^2 / (6-x))' = ((3x^2)' *(6-x) - (3x^2)*(6-x)') / (6-x)^2 = ((3*2x)*(6-x) - (3x^2)*(-1)) / (6-x)^2 = = (6x*(6-x) + (3x^2)) / (6-x)^2 = (36x - 6x^2 + 3x^2) / (6-x)^2 = (36x - 3x^2) / (6-x)^2 = = -3*(x^2 - 12x) / (6-x)^2 = -3*(x^2 - 12x + 36 - 36) / (-1*(x-6))^2 = = -3*((x-6)^2 - 36) / (x-6)^2 = -3*((x-6)^2 / (x-6)^2 - 36 / (x-6)^2) = = -3*(1 - 36/(x-6)^2) = -3 + 108/(x-6)^2 = 108/(x-6)^2 - 35. ((5x^3 - 5x + 4)*(√(2x) - 8))' = (5x^3 - 5x + 4)' *(√(2x) - 8) + (5x^3 - 5x + 4)*(√(2x) - 8)' = = (5*3x^2 - 5*1 + 0)*(√(2x) - 8) + (5x^3 - 5x + 4)*((1/2√(2x)) * 2 - 0) = = (15x^2 - 5)*(√(2x) - 8) + (5x^3 - 5x + 4)*(1/√(2x)) = = (15x^2 - 5)*(√(2x) - 8) + (5x^3 - 5x + 4)/√(2x)6. неясные символы в задаче.7. ((4x - 3x^2)/(7+2x^4))' = ((4x - 3x^2)' *(7+2x^4) - (4x - 3x^2)*(7+2x^4)') / (7+2x^4)^2 == ((4*1 - 3*2x)*(7+2x^4) - (4x - 3x^2)*(0+2*4x^3)) / (7+2x^4)^2 == ((4 - 6x)*(7+2x^4) - (4x - 3x^2)*(8x^3)) / (7+2x^4)^2 = = (28 + 8x^4 - 42x - 12x^5 - 32x^4 + 24x^5) / (7+2x^4)^2 = = (12x^5 - 24x^4 - 42x + 28) / (7+2x^4)^2 = 2*(6x^5 - 12x^4 - 21x + 14) / (7+2x^4)^28. ((x^3)/4 - 4/x^3 + 0.5x - 1)' = (1/4)*(x^3)' - 4*(1/x^3)' + 0.5*(x)' - (1)' == (1/4)*(3x^2) - 4*(-3/x^4) + 0.5*1 - 0 = (3x^2)/4 + 12/x^4 + 0.5