• 1) Второй член арифметической прогрессии составляет 88% от первого. сколько процентов от первого члена составляет пятый член этой прогрессии?

     

    2)Найдите знаменатель геометрической прогрессии, если отношение суммы первых ее девяти членов к сумме следующих за ними девяти членов этой же прогрессии равно 512.

Ответы 1

  • 1) это, наверное, геометрическая прогресиия.

    q = 0,88

    b₃ = b₁ * q² = 0,7744 b₁

    Ответ: 77,44 %

    2) Представим суму первых 9-ти и следующих 9-ти членов прогрессии.

    S₁₋₉ = b₁ + b₁q + b₁q² + b₁q³ + b₁q⁴ + b₁q⁵ + b₁q⁶+ b₁q⁷+b₁q⁸ =

    = b₁ (1 + q + q² + q³ + q⁴ + q⁵ + q⁶+ q⁷+q⁸).

    S₁₀₋₁₈ = b₁q⁹ (1 + q + q² + q³ + q⁴ + q⁵ + q⁶+ q⁷+q⁸).

    \frac{b_{1} * (1 + q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6}+ q^{7}+q^{8})}{b_{1}q^{9} * (1 + q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6}+ q^{7}+q^{8})} = 512\\ \frac{1}{q^{9}} = 512

    q = 0,5

    • Автор:

      ramirez
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years