• Дан треугольник со сторонами 16, 20 и 12. Найдите площадь треугольника, вершинами которого являются середины сторон данного треугольника.

Ответы 1

  • Проверим теорему Пифагора для данного треугольника: 16^2+12^2=20^2

    400=400, следовательно треугольник прямоугольный. 20- гипотенуза, 16 и 12 катеты. По условию стороны искомого треугольника являются средними линиями треугольника. Следовательно по свойству средней линии имеем треугольник со сторонами 6, 10, 8, где 10 гипотенуза, а 6 и 8 катеты. По формуле площади треугольника имеем S=(6*8)/2=24 

    ответ: площадь треугольника 24 

    • Автор:

      axelevans
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years