Сначала формулы приведения.Затем формулы двойного углаsin2α=2sinαcosαcos2α=cos²α-sin²α=cos²α-(1-cos²α)=2cos²α-1⇒ 2cos²α=1+cos2αcos2α=cos²α-sin²α=1-sin²α-sin²α=1-2sin²α⇒ 2sin²α=1-cos2αа) сos75°cos105°=cos(90°-15°)·cos(90°+15°)== sin15°(-sin15°)=-sin²15°=-(1-cos30°)/2=(cos30°-1)/2=((√3/2)-1)/2=0,25√3-0,5б) sin75°sin15°=°sin(90°-15°)sin15°=cos15°sin15°=sin30°/2=1/4=0,25в) sin105°cos15°=sin(180°-75°)cos15°=sin75°cos15°=sin(90°-15°)cos15°=cos15°cos15°=(1+cos30°)/2=(1+(√3/2))/2=0,5 +0,25√32 способФормулыcosα·cosβ=0,5cos(α-β)+0,5cos(α+β)sinα·sinβ=0,5cos(α-β)-0,5cos(α+β)sinα·cosβ=0,5sin(α+β)+0,5sin(α-β)а) сos75°cos105°=0,5cos(75°-105°)+0,5cos(75°+105°)=0,5cos(-30°)+0,5 cos180°==0,5·√3/2+0,5·(-1)=0,25√3-0,5б) sin75°sin15°=0,5cos(75°-15°)-0,5cos(75°+15°)=0,5cos60°-0,5 cos90°=0,5·0,5=0,25в) sin105°cos15°=0,5sin(105°+15°)+0,5sin(105°-15°)= =0,5sin120°+0,5sin90°==0,5 sin(180°-60°)+0,5·1=0,5 sin 60°+0,5=0,25√3+0,5