• Кароче один ученик решил 44 задания из всех 50,а второй только 26 из э
    того же списка.Какова вероятность того,что случайным образом выбрунную из списка задачу:
    1) решили оба ученика
    2)решил первый,но не решил второй
    3)решил второй,но не решил первый
    Измените в условии число 50(сохранив 26 задач для второго ученика)так ,чтобы ответы в пунктах 1)и 2) были одинаковы

Ответы 1

  • P(A)= \frac{44}{50}* \frac{26}{50}= \frac{286}{625}=0,4576\\\\P(B)=  \frac{44}{50}*(1- \frac{26}{50})=   \frac{44}{50}* \frac{24}{50}= \frac{264}{625}=0,4224\\\\P(C)=(1- \frac{44}{50})* \frac{26}{50}= \frac{6}{50}* \frac{26}{50}= \frac{39}{625}=0,0624\\\\\\ \frac{44}{x}* \frac{26}{x}= \frac{44}{x}*(1- \frac{26}{x})|* \frac{x}{44} \\\\ \frac{26}{x}= \frac{x-26}{x}|*x\\\\x-26=26\\x=26+26\\x=52             Итак, 50 надо поменять на число 52. Тогда ответы в 1) и 2) будут одинаковы.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years