Предмет:
Другие предметыАвтор:
анонимНайдем корни тригонометрического уравнения.
cos x = |sin x|;
{ sin x = cos x;
sin x = -cos x;
1) sin x = cos x;
sin x - cos x = 0;
(sin x - cos x)^2 = 0;
sin^2 x - 2 * sin x * cos x + cos^2 x = 0;
1 - 2 * sin x * cos x = 0;
1 - sin (2 * x) = 0;
sin (2 * x) = 1;
2 * x = pi/2 + 2 * pi * n, n принадлежит Z;
x = pi/4 + pi * n, n принадлежит Z.
2) sin x = -cos x;
sin x + cos x = 0;
(sin x + cos x)^2 = 0;
sin^2 x + 2 * sin x * cos x + cos^2 x = 0;
1 + 2 * sin x * cos x = 0;
sin (2 * x) = -1;
2 * x = -pi/2 + 2 * pi * n, n принадлежит Z;
x = -pi/4 + pi * n, n принадлежит Z.
Автор:
mira9Добавить свой ответ
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
анонимОтветов:
Смотреть