Пусть гоночный автомобиль, имея начальную скорость v₀, начал тормозить с постоянным ускорением а. За первую секунду он проехал расстояние S₁ = 50 м, то есть время движения было t₁ = 1 с. Для этого случая уравнение движения равноускоренного прямолинейного движения имеет вид: S₁ = v₀ ∙ t₁ + а ∙ t₁^2/2.
За вторую секунду он проехал расстояние S₂ – S₁ = 40 м, где S₂ – путь, пройденный автомобилем за время t₂ = 2 с и S₂ = v₀ ∙ t₂ + а ∙ t₂^2/2, при этом S₂ – S₁ = (v₀ ∙ t₂ + а ∙ t₂^2/2) – (v₀ ∙ t₁ + а ∙ t₁^2/2); S₂ – S₁ = v₀ ∙ (t₂ – t₁) + а ∙ (t₂^2 – t₁^2)/2.
Подставим значения величин в формулы, получим систему уравнений:
50 м = v₀ ∙ 1 с + а ∙ (1 с)^2/2 и 40 м = v₀ ∙ (2 с – 1 с) + а ∙ ((2 с)^2 – (1 с)^2)/2;
а = – 10 м/с^2; v₀ = 55 м/с.
Ответ: начальная скорость автомобиля была 55 м/с.
Автор:
tobíasvwpkДобавить свой ответ
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть
Предмет:
МатематикаАвтор:
анонимОтветов:
Смотреть